(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

f(a, empty) → g(a, empty)
f(a, cons(x, k)) → f(cons(x, a), k)
g(empty, d) → d
g(cons(x, k), d) → g(k, cons(x, d))

Rewrite Strategy: INNERMOST

(1) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(2) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

f(a, empty) → g(a, empty)
f(a, cons(x, k)) → f(cons(x, a), k)
g(empty, d) → d
g(cons(x, k), d) → g(k, cons(x, d))

S is empty.
Rewrite Strategy: INNERMOST

(3) SlicingProof (LOWER BOUND(ID) transformation)

Sliced the following arguments:
cons/0

(4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

f(a, empty) → g(a, empty)
f(a, cons(k)) → f(cons(a), k)
g(empty, d) → d
g(cons(k), d) → g(k, cons(d))

S is empty.
Rewrite Strategy: INNERMOST

(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(6) Obligation:

Innermost TRS:
Rules:
f(a, empty) → g(a, empty)
f(a, cons(k)) → f(cons(a), k)
g(empty, d) → d
g(cons(k), d) → g(k, cons(d))

Types:
f :: empty:cons → empty:cons → empty:cons
empty :: empty:cons
g :: empty:cons → empty:cons → empty:cons
cons :: empty:cons → empty:cons
hole_empty:cons1_0 :: empty:cons
gen_empty:cons2_0 :: Nat → empty:cons

(7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
f, g

They will be analysed ascendingly in the following order:
g < f

(8) Obligation:

Innermost TRS:
Rules:
f(a, empty) → g(a, empty)
f(a, cons(k)) → f(cons(a), k)
g(empty, d) → d
g(cons(k), d) → g(k, cons(d))

Types:
f :: empty:cons → empty:cons → empty:cons
empty :: empty:cons
g :: empty:cons → empty:cons → empty:cons
cons :: empty:cons → empty:cons
hole_empty:cons1_0 :: empty:cons
gen_empty:cons2_0 :: Nat → empty:cons

Generator Equations:
gen_empty:cons2_0(0) ⇔ empty
gen_empty:cons2_0(+(x, 1)) ⇔ cons(gen_empty:cons2_0(x))

The following defined symbols remain to be analysed:
g, f

They will be analysed ascendingly in the following order:
g < f

(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
g(gen_empty:cons2_0(n4_0), gen_empty:cons2_0(b)) → gen_empty:cons2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)

Induction Base:
g(gen_empty:cons2_0(0), gen_empty:cons2_0(b)) →RΩ(1)
gen_empty:cons2_0(b)

Induction Step:
g(gen_empty:cons2_0(+(n4_0, 1)), gen_empty:cons2_0(b)) →RΩ(1)
g(gen_empty:cons2_0(n4_0), cons(gen_empty:cons2_0(b))) →IH
gen_empty:cons2_0(+(+(b, 1), c5_0))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(10) Complex Obligation (BEST)

(11) Obligation:

Innermost TRS:
Rules:
f(a, empty) → g(a, empty)
f(a, cons(k)) → f(cons(a), k)
g(empty, d) → d
g(cons(k), d) → g(k, cons(d))

Types:
f :: empty:cons → empty:cons → empty:cons
empty :: empty:cons
g :: empty:cons → empty:cons → empty:cons
cons :: empty:cons → empty:cons
hole_empty:cons1_0 :: empty:cons
gen_empty:cons2_0 :: Nat → empty:cons

Lemmas:
g(gen_empty:cons2_0(n4_0), gen_empty:cons2_0(b)) → gen_empty:cons2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)

Generator Equations:
gen_empty:cons2_0(0) ⇔ empty
gen_empty:cons2_0(+(x, 1)) ⇔ cons(gen_empty:cons2_0(x))

The following defined symbols remain to be analysed:
f

(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
f(gen_empty:cons2_0(a), gen_empty:cons2_0(n440_0)) → gen_empty:cons2_0(+(n440_0, a)), rt ∈ Ω(1 + a + n4400)

Induction Base:
f(gen_empty:cons2_0(a), gen_empty:cons2_0(0)) →RΩ(1)
g(gen_empty:cons2_0(a), empty) →LΩ(1 + a)
gen_empty:cons2_0(+(a, 0))

Induction Step:
f(gen_empty:cons2_0(a), gen_empty:cons2_0(+(n440_0, 1))) →RΩ(1)
f(cons(gen_empty:cons2_0(a)), gen_empty:cons2_0(n440_0)) →IH
gen_empty:cons2_0(+(+(a, 1), c441_0))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(13) Complex Obligation (BEST)

(14) Obligation:

Innermost TRS:
Rules:
f(a, empty) → g(a, empty)
f(a, cons(k)) → f(cons(a), k)
g(empty, d) → d
g(cons(k), d) → g(k, cons(d))

Types:
f :: empty:cons → empty:cons → empty:cons
empty :: empty:cons
g :: empty:cons → empty:cons → empty:cons
cons :: empty:cons → empty:cons
hole_empty:cons1_0 :: empty:cons
gen_empty:cons2_0 :: Nat → empty:cons

Lemmas:
g(gen_empty:cons2_0(n4_0), gen_empty:cons2_0(b)) → gen_empty:cons2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
f(gen_empty:cons2_0(a), gen_empty:cons2_0(n440_0)) → gen_empty:cons2_0(+(n440_0, a)), rt ∈ Ω(1 + a + n4400)

Generator Equations:
gen_empty:cons2_0(0) ⇔ empty
gen_empty:cons2_0(+(x, 1)) ⇔ cons(gen_empty:cons2_0(x))

No more defined symbols left to analyse.

(15) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
g(gen_empty:cons2_0(n4_0), gen_empty:cons2_0(b)) → gen_empty:cons2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)

(16) BOUNDS(n^1, INF)

(17) Obligation:

Innermost TRS:
Rules:
f(a, empty) → g(a, empty)
f(a, cons(k)) → f(cons(a), k)
g(empty, d) → d
g(cons(k), d) → g(k, cons(d))

Types:
f :: empty:cons → empty:cons → empty:cons
empty :: empty:cons
g :: empty:cons → empty:cons → empty:cons
cons :: empty:cons → empty:cons
hole_empty:cons1_0 :: empty:cons
gen_empty:cons2_0 :: Nat → empty:cons

Lemmas:
g(gen_empty:cons2_0(n4_0), gen_empty:cons2_0(b)) → gen_empty:cons2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
f(gen_empty:cons2_0(a), gen_empty:cons2_0(n440_0)) → gen_empty:cons2_0(+(n440_0, a)), rt ∈ Ω(1 + a + n4400)

Generator Equations:
gen_empty:cons2_0(0) ⇔ empty
gen_empty:cons2_0(+(x, 1)) ⇔ cons(gen_empty:cons2_0(x))

No more defined symbols left to analyse.

(18) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
g(gen_empty:cons2_0(n4_0), gen_empty:cons2_0(b)) → gen_empty:cons2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)

(19) BOUNDS(n^1, INF)

(20) Obligation:

Innermost TRS:
Rules:
f(a, empty) → g(a, empty)
f(a, cons(k)) → f(cons(a), k)
g(empty, d) → d
g(cons(k), d) → g(k, cons(d))

Types:
f :: empty:cons → empty:cons → empty:cons
empty :: empty:cons
g :: empty:cons → empty:cons → empty:cons
cons :: empty:cons → empty:cons
hole_empty:cons1_0 :: empty:cons
gen_empty:cons2_0 :: Nat → empty:cons

Lemmas:
g(gen_empty:cons2_0(n4_0), gen_empty:cons2_0(b)) → gen_empty:cons2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)

Generator Equations:
gen_empty:cons2_0(0) ⇔ empty
gen_empty:cons2_0(+(x, 1)) ⇔ cons(gen_empty:cons2_0(x))

No more defined symbols left to analyse.

(21) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
g(gen_empty:cons2_0(n4_0), gen_empty:cons2_0(b)) → gen_empty:cons2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)

(22) BOUNDS(n^1, INF)